
1

VERIFICATION AND VALIDATION OF SCIENTIFIC AND ECONOMIC MODELS

R.C. KENNEDY,∗ X. XIANG, G.R. MADEY, and T.F. COSIMANO,
University of Notre Dame, Notre Dame, IN

ABSTRACT

As modeling techniques become increasingly popular and effective means for simulating
real-world phenomena, it becomes increasingly important to enhance or verify our
confidence in them. Verification and validation techniques are neither as widely used nor
as formalized as one would expect when applied to simulation models. In this paper, we
present our methods and results through two very different case studies: a scientific
model and an economic model. We show that we were able to successively verify the
simulations and, in turn, identify general guidelines on the best approach to a new
simulation experiment. We also draw conclusions on effective verification and validation
techniques and note their applicability.

Keywords: Verification, validation, simulation, natural organic matter, agent-based
modeling, Ramsey problems

INTRODUCTION

The use of simulations to model and study scientific and economic phenomena has the
potential to be informative; however, the data produced by simulations are most valuable when
they can be both verified and validated. In simple terms, this means the data produced are
credible and indiscernible from real-world data. This achievement proves to be very difficult, as
most real-world systems contain far more constraints and details than computers allow us to
reasonably model, and this situation is even more difficult for agent-based simulations and
simulations of social and economic phenomena. This leaves most of our simulations as
abstractions of real-world phenomena. Their purposes range from helping us to better understand
natural phenomena to allowing us to predict the behavior of a system. With the varying purposes
of simulations, verification and validation techniques also vary. The problem is that there is no
universal verification and validation process that can be applied to all models. The purpose of
our work is to explore and apply verification and validation techniques to two very different case
studies. The first case study focuses on a scientific problem: the study of natural organic matter
(NOM). It has an agent-based backbone and was written first in Pascal then transformed into
Java with Repast. The second case study involves an economic problem: solving Ramsey
problems in a stochastic monetary economy. It has a more numerical basis and was written first
in Matlab and then in C++. We will compare two unrelated simulations that were each written in
different programming languages and then compare and verify results. In addition, we will
explore some general guidelines to use as an approach to increasing the confidence of a new
simulation.

∗ Corresponding author address: Ryan C. Kennedy, 384 Fitzpatrick Hall of Engineering, University of Notre

Dame, Notre Dame, IN 46556; email: rkenned1@nd.edu.

2

The organization of this paper is as follows. The next section outlines what we mean by
verification and validation and introduces some general methods. The section that follows
describes various aspects of our first case study, including background, validation, and
implementation. Then the same is done for our second case study. A conclusion and some
general guidelines are provided in the section following that. Finally, a discussion of future work
and references conclude the paper.

VERIFICATION AND VALIDATION PROCESS

Simply put, model verification is getting the model right. This means that the code
generating the phenomenon being modeled correctly matches the abstract model. Model
validation is getting the right model, meaning that the correct abstract model was chosen and
accurately represents the real-world phenomenon. It is important to note that verification and
validation are key parts of the model development process. Moreover, they must be performed in
tandem for the best results. Effective verification and validation of a model will increase the
confidence in the model, making it more valuable. An adapted version of Sargent’s (1998) and
Huang’s (2005) verification and validation process diagram is shown in Figure 1. It has been
modified for agent-based scientific and economic simulations.

While there have been many verification and validation studies performed for general

engineering purposes, verification and validation studies for agent-based and social science
simulations are lacking. Some of this can be attributed to agent-based modeling not being as
mature as engineering modeling. The point is that we can adapt what has already been done as
well as create new tools to fit the needs of agent-based modeling.

FIGURE 1 A verification and validation process
for scientific and economic simulations

3

Balci (1998) outlined 15 general simulation principles, developed primarily for
engineering or management science applications. His principles help engineers and researchers
better understand the verification and validation they are performing. This understanding is
directly related to model success. A few of his principles that are relevant to scientific and
economic modeling are presented next.

1. The outcome of the simulation model verification, validation, and testing

should not be considered as a binary variable where the model outcome is
absolutely correct or incorrect. It is important to realize that models, being
abstractions and not absolute representations of phenomena, can never totally
and exactly match a system.

2. Complete simulation model testing is not possible. As we cannot test all

possible inputs and parameters for a system, we must choose the most
appropriate ones.

3. Simulation model verification, validation, and testing must be planned and

documented. Successful planning and documentation are critical and involve
the work of many people throughout the lifetime of the system.

4. Successfully testing each submodel (module) does not imply overall model

credibility. Simply because the modules work well independently does not
mean they will work cohesively in a system.

When verification and validation of a model are being performed, it is good to begin by

identifying the key principles and techniques to be used for that model. Moreover, planning the
verification and validation process, as outlined previously, makes the process more complete and
effective. Utilizing Balci’s (1998) principles and techniques is a great starting point; from there,
model confidence can be improved with further subjective and quantitative methods. We next
outline a general verification and validation process that can be adapted to fit many agent-based,
social, and economic models. A hierarchy of such methods is shown in Figure 2.

Subjective Methods

 Subjective methods largely rely on the judgment of domain experts. They are often used
for initial quick-and-dirty validation, but they can also be more formalized. Whatever the
purpose, subjective methods typically require less effort than quantitative methods, can detect
flaws early in the simulation process, and are often the only applicable verification and
validation methods for exploratory simulation studies. We next describe some of the subjective
techniques proposed by Balci (1998) that may be applicable to economic and agent-based
scientific simulations. His techniques are widely used in validating the models of manufacturing,
engineering, and business processes. The following has been adapted from Xiang et al. (2005).

1. Face validation. This preliminary approach to validation involves asking
domain experts whether the model behaves reasonably and is sufficiently
accurate. This is often achieved by evaluating the output or observing a
visualization, if applicable.

4

FIGURE 2 Verification and validation
methods

2. Turing test. This technique is performed by giving domain experts model

outputs and real-world outputs and asking them to discriminate them.

3. Internal validity. This involves comparing the results of several replications of
a simulation, with the only difference being the random seed. Inconsistencies
in the results question the validity of some aspect of the model.

4. Tracing. Here, the behavior of entities in the model is followed to determine if

the logic of the model is correct.

5. Black-box testing. This technique involves how accurately the model

transforms the input to output in a system.

Quantitative Methods

 Incorporating quantitative, or statistical, methods into the validation process can
significantly increase the credibility of the model. Model validation is conducted by using
statistical techniques to compare the model output data with the corresponding system or with
the output data of other models run with the same input data.

5

The first step to starting quantitative analysis is to determine a set of appropriate output
measures that can answer user questions (Xiang et al. 2005). After a set of output measures has
been collected, various statistical techniques can be applied to complete the validation process.
Time series, means, variances, and aggregations of each output measure can be presented as a set
of graphs for model development, face validation, and Turing tests. Confidence intervals and
hypothesis tests can be used in the comparison of parameters, distributions, and time series of
output data for each set of experimental conditions. These statistical tests can help model
developers determine if the model’s behavior is acceptably accurate.

The cost of the validation process increases exponentially with the confidence range for a

model. There is no single validation approach applicable to all computational models. Choosing
the appropriate statistical test techniques and measures of a system is important when conducting
a validation process. It is important to note that there is no correct set of statistical tests to use for
every simulation; the best results are achieved when tests are carefully chosen according to the
model. Some of Balci’s (1998) more quantitative techniques that are relevant to our case studies
are next described.

1. Docking. Docking, or model-to-model comparison or alignment, is used when
another model that models the same phenomenon exists or can be created.
Docking helps to determine whether two or more models can produce the
same results (Axtell et al. 1996). The main idea is that model confidence is
significantly improved when two or more models produce the same effective
results, particularly if the models were developed independently and with
different techniques. In addition, the output from a model can be validated
against real-world data.

2. Historical data validation. When historical data exist or can be collected,

these data can be used to build the model, and the remaining data can then
used to determine if the model behaves as the system does.

3. Sensitivity analysis/parameter variability. Here, one changes the input values

and the internal parameters of a model to determine the effect on the model
and its output. Ideally, the relationship in the real-world system should be
mimicked in the model. Sensitive parameters that cause significant changes in
the model’s behavior should be made sufficiently accurate before this model
is used.

4. Predictive validation. This technique is used to compare the model’s

prediction with actual system behavior. The system data may come from an
operational system or specific experiments, such as from a laboratory or from
field experiments.

CASE STUDY I: AN AGENT-BASED SCIENTIFIC MODEL

NOM is a heterogeneous mixture of molecules. NOM plays a crucial role in the evolution
of soils, transport of pollutants, and carbon cycle (Cabaniss et al. 2005; Xiang et al. 2005). Its
evolution is an important research area in a number of disciplines. NOM is complex; it is made
up of molecules with varying molecular weights, reactivity levels, and functional groups. This

6

makes it difficult to model. Performing chemical experiments with NOM is difficult and time-
consuming because of its complexity and because of our limited knowledge of its inner
workings. The ability to effectively predict NOM behavior as it evolves over space and time
would be very valuable to scientists and an accomplishment in the modeling discipline.

Conceptual Model

The NOM conceptual model was based on the work of a chemist working at the
University of New Mexico (Cabaniss et al. 2005). He generated his model from extensive
observation and experimentation in the laboratory. His basic model outlined the use of the
precursor molecules cellulose, lignin, and protein (among others) to be used in a controlled
environment where parameters such as light intensity, temperature, and density could be varied.
A more detailed description of our model follows and has been adapted from Xiang et al. (2005).

Agents

Our agents are molecules. Each molecule is a representation of its underlying elemental

formula, meaning the number of C, H, O, N, S, and P atoms present. This gives rise to a
molecular weight for each molecule. Molecules also contain a functional group count, such as
the number of alcohol or ester groups present.

Behavior

In our environment, agents can move around a grid, interacting with other molecules and

their environment. Molecules undergo chemical reactions on the basis of specific probabilities.
Reactions can result in structural changes in the molecule, such as the addition of functional
groups. They can also generate new molecules from predecessor molecules, and the predecessor
molecules may leave the system. Twelve types of chemical reactions, including first- and
second-order chemical reactions, are modeled as described in Table 1. The categories of
reactions are as follows:

1. First-order reactions with a split. The predecessor molecule A is split into

two successor molecules B and C. Molecule B occupies the position of
molecule A, while one of the empty cells closest to molecule B is filled with
molecule C.

2. First-order reactions without a split. The transformation only changes the

structure of the predecessor molecule A.

3. First-order reactions with the disappearance of a molecule. The predecessor

molecule A disappears from the system.

4. Second-order reactions. Two molecules A and B are combined to form a new

molecule C. Molecule C replaces molecule A, and molecule B is removed
from the system.

7

TABLE 1 Chemical reactions

Name

Type

Ester condensation Second order
Ester hydrolysis First order with a split
Amide hydrolysis First order with a split
Microbial uptake First order with the disappearance of a molecule
Dehydration First order with a split
Strong C = C oxidation First order with a split (50% of the time)
Mild C = C oxidation First order without a split
Alcohol C-O-H oxidation First order without a split
Aldehyde C =O oxidation First order without a split
Decarboxylation First order without a split
Hydration First order without a split
Aldol condensation Second order

Space

In the NOM model, the agents are associated with a location in two-dimensional (2D)

geometrical space and can move around their environment. Each cell on the grid can host
multiple molecules up to a certain threshold.

Reaction Probabilities

The probability for each reaction type is expressed in terms of intrinsic and extrinsic

factors. Intrinsic factors are derived from the molecular structure, including the number of
functional groups and many other structural factors. Extrinsic factors arise from the environment
and include concentrations of inorganic chemical species, light intensity, availability of surfaces,
presence of microorganisms, presence and concentration of extracellular enzymes, and presence
and reactivity of other NOM molecules. The intrinsic and extrinsic factors are combined in
probabilistic functions.

Molecular Properties

The reactivity of the resulting NOM over time can be predicted on the basis of the

distributions of molecular properties, which are calculated from the elemental composition and
functional group data. They represent a measurable quantity that can be used as a predictor for
environmental function and are useful for the calibration and verification of our conceptual
model and simulation.

Simulation Process

The conceptual model is a stochastic synthesis model of NOM evolution, meaning that

the state of the system is represented by a set of values with a certain probability distribution,
such that the evolution of the system depends on a series of probabilistic discrete events. At each

8

time-step, for each molecule, a uniform random number is generated. This number determines
whether a reaction will occur, and if one does occur, its reaction type. After a reaction takes
place, the attributes for the current molecule are updated, and the reaction probabilities are
recalculated. The molecule structure is changed to alter the outcome of the reaction, and a new
probability table entry is added for newly formed molecules, if there are any.

Implementations

The NOM conceptual model was initially implemented in Pascal, resulting in a program
for Windows called AlphaStep. Our implementation is coded by using Java (Sun JDK 1.4.2) and
the Repast toolkit. Repast is an agent-based simulation toolkit written in Java. It contains a
control panel to control and manipulate the model and has rich visualization capabilities. We
chose Java for our model because we also incorporate a Web-based front end to the system
where users can create and submit simulations, as well as view graphical results.

Validation

 We followed the general technique previously outlined when validating the NOM model.
We began with subjective analysis and then proceeded with quantitative analysis.

Subjective Analysis

The validation of the NOM model began with face validation of the conceptual model by
domain experts. They evaluated the underlying mechanisms and properties and drew their
conclusions. After initial face validation was achieved, coding of the agent-based simulation took
place. In this step, verification methods, such as code walk-through, trace analysis, input-output
testing, pattern testing, boundary testing, code debugging, and calculation verification, were used
to verify the correctness of the simulation. Another useful technique used for simulation
validation is visualization (Grimm 2002). Visualization is often used in conjunction with face
validation. A snapshot of an animated visualization of the flow of molecules through a soil
column is shown in Figure 3. A corresponding animated graph shows how the molecular weight
distribution shifts with time, initially favoring lower-weight molecules and gradually shifting to
larger molecular weights as the simulated time passes. These same behaviors were observed in
the laboratory, which increases confidence in the simulation.

A simulation model that uses random number generators must have statistical integrity in

that independent simulations with the same input data should have similar results. This is also
known as internal validity. If the simulation model produced large variabilities because of the
random seeds, there would be a considerable problem with it. To test this, we performed 450
simulations with our NOM simulator, each with a different random seed. We chose the total
number of molecules in the system after the simulation had completed as our point for
comparison. We found that our simulations produced the expected normal curve upon analysis of
the data. Figure 4 shows the histogram for the data. By verifying the independency of the random
seeds in the NOM simulator, we were able to conclude that it is statistically robust in terms of
repeatability. Further statistical analysis needs to be performed to verify how reliably our
simulator conforms to a normal distribution.

9

FIGURE 3 NOM visualization

Number of Molecules

1775.0

1725.0

1675.0

1625.0

1575.0

1525.0

1475.0

1425.0

1375.0

1325.0

1275.0

1225.0

Fr
eq

ue
nc

y

60

50

40

30

20

10

0

Std. Dev = 100.79
Mean = 1473.9

N = 450.00

FIGURE 4 Histogram showing distribution
after 1,000 simulated hours

Quantitative Analysis

Both our NOM model and the AlphaStep model rely on the same basic conceptual model.

However, there are a few inherent differences. First, AlphaStep has no sense of space. Instead, its
agents are described as parts of a “well-stirred soup,” each equally likely to react with any other
molecule. Another key difference is the programming language used in each simulation. We
summarize the main differences between implementations in Table 2.

10

TABLE 2 Implementation differences

Feature

AlphaStep

NOM

Programming language Pascal Java
Platform Windows Linux
Running mode Standalone Web based, standalone
Simulation packages None Repast
Initial population Actual number of molecules Percentage distribution of molecules
Animation None Yes
Spatial representation None 2D grid
Second-order reaction Randomly pick one from molecule list Choose nearest neighbor
First-order reaction with split Add to molecule list Find empty cell nearby

To dock these stochastic simulations, we performed 25 replications, each with different
random seeds, for both implementations given effectively the same initial conditions. Among the
many molecular variables, we chose number of molecules, MWn (number-average molecular
weight), MWw (weight-average molecular weight), carbon mass, and carbon percentages as
metrics for comparison. We took ensemble averages from 25 replications and compared data
points over time. These comparisons are shown in Figure 5. As one can see, visual agreement
looks very good; however, statistical testing must be performed to ensure that differences
between the models are not significant.

CASE STUDY II: AN EQUATION-BASED ECONOMIC MODEL

Ramsey problems are concerned with setting specific economic variables — money
growth and tax rate — to generate the best social welfare for a given economy (Cosimano and
Gapen 2005). In our model, nonlinear projection methods are used to solve these problems. The
goal is to calculate the real or nominal interest rate for a given economy under the optimal
money growth and tax rates. Our model creates a set of residual equations, using bivariate
Chebyshev polynomials.

The simulation was initially written for Matlab. It effectively takes advantage of Matlab’s
built-in functions and capabilities, but execution is slow. The current model works off of four
equations and on moderate-sized matrices. The next iteration of the model would include a fifth
equation and much larger matrices, making execution in Matlab unpractical. Once the model was
verified and validated in Matlab, we converted the code to C++ to make it execute faster.

Conceptual Model and Implementation Differences

Matlab is a matrix laboratory, meaning a rich interactive programming environment that
supports many data types best suited for numerical analysis. Matlab, being a high-level language,
is very user friendly and has many built-in functions and display options. Matlab is also useful
for prototyping. It is, however, inherently slow; it is essentially a software package written in C,
and simulations written in Matlab are interpreted, resulting in slow execution. C++, on the other
hand, is an object-oriented, lower-level language. Its standard template library incorporates many

11

FIGURE 5 Comparisons between AlphaStep and NOM

desirable functions, and it is relatively simple to code. Because C++ has an efficient compiler
and is a lower-level language, simulations written directly in C++ run much faster than
equivalent simulations written in Matlab.

Converting the simulation from Matlab to C++ was much more difficult than expected. In
Matlab, variables are not declared as they are in C++. Instead, most variables are assumed to be
arrays. These arrays can contain real numbers, complex numbers, or even other arrays of real

12

numbers, among other things. This creates a big problem in C++, as variables must be declared
with a data type. For example, the variable array1 could represent an array of real numbers at
one point in a Matlab program and an array of complex numbers at another point. The idea is
that the variable array1 is, in essence, overloaded to handle many data types. In C++, functions
operate and are called differently depending on the type of data passed to them. Overcoming this
step was pivotal to porting the code.

Another main difficulty in going from Matlab to C++ was emulating Matlab’s built-in
functions. The majority of the Matlab functions used in this simulation are part of the LAPACK,
or linear algebra package, and include functions such as taking the normal of a matrix or vector,
inverting a matrix, conditioning a matrix, etc. Not only are these not inherently included in C++,
but they are again overloaded in the sense that you can pass Matlab’s max function a vector, a
matrix, or a simple set of numbers, and it will give the proper result. While it is possible to call
Matlab from within C++ to make use of such functions, the desire of this project was to have
everything run in C++ for maximum speed. Determining the inner workings of Matlab’s many
functions and implementing approximations of them in C++ proved difficult and time-
consuming. In the end, the core of the simulations did the same thing, but with an inherently
different implementation, requiring a rigorous verification and validation effort.

Performance

Running time for runs of 5, 50, and 500 iterations of the simulation can be found in
Table 3 and Figure 6. As evidenced, the speedup is significant, or approximately 30 times faster
in C++.

Validation

 Validating the economic model was a little different than validating the scientific model
described in the first case study. The validation process helped us identify some problems with
the C++ implementation, so we were limited in the amount of quantitative analysis that we could
perform. In this case, validation served the purpose of identifying what was wrong with our
implementation.

TABLE 3 Running time for Matlab and C++ implementations

5 Iterations

50 Iterations

500 Iterations

Matlab 58 seconds 568 seconds 8,872 seconds
C++ 2 seconds 17 seconds 176 seconds

13

FIGURE 6 Performance comparison of Matlab
and C++ implementations

Subjective Analysis

 Validation was performed throughout the code porting process. It was important to verify
that the control flow was similar in both versions and that the data were handled in the same
manner. To accomplish this, a sort of tracing was performed in which the behavior of certain
entities in the models, such as the Lagrange multiplier, was followed in both versions of the
model. This helped validate the C++ model against the Matlab model and also helped us identify
where our code was going wrong. Table 4 shows some sample results from our code. The steady-
state data are taken from Cosimano and Gapen (2004). Our results show that the programs
produced similar results for the more important variables. However, the variable representing the
real interest rate shows a significant disparity. Tracing helped us discover the likely cause: that
the matrix inversion function in the C++ code is not as robust as it is in the Matlab version.
When presented to a domain expert, face validity was achieved for most of the values shown in
Table 4. Because the core of the simulation is equation based, output values should be consistent
through both of our versions. This correlates to us performing more of a “face verification”
technique in judging the correctness of our results.

Quantitative Analysis

Simple checking, such as outputting key variables as the programs were running, helped
validate that the calculations were being done correctly. In essence, the C++ version of the code
was validated against the Matlab code in the docking process. In addition, the labor and
Lagrange multiplier values were docked against the steady-state data, further increasing
confidence. The face validity checking helped identify some errors in our code, while docking
helped us isolate and verify the problem. More verification and validation techniques need to be
performed for this case study.

14

TABLE 4 Face verification

Model

Lagrange
Multiplier Labor

Money
Growth Tax Rate Cash Good Credit Good

Real Interest

Rate

Matlab 0.138 0.309 –0.009 0.188 0.486 0.621 0.009
C++ 0.123 0.309 –0.009 0.188 0.486 0.621 –0.659
Steady state 0.138 0.309 –0.009 0.188 0.485 0.620 0.009

CONCLUSION

 In this paper, we have shown how we performed verification and validation through
docking on two very different models. We have shown that similar techniques can be applied to
the models, regardless of the underlying model structure.

General Guidelines

 When designing a simulation, it is important to have a concise abstract representation of
the model in mind. This abstract representation will help lead to effective programming and
implementation choices. On the basis of this, one can choose the correct environment or
language for the model. As we have shown here, different environments and languages have
their own distinct advantages and disadvantages. It is upon these that our programming decisions
must be based. It is important to note that the entire lifetime of the model must be considered
when making these decisions. The choices must also be made with consideration given to the
verification and validation techniques that will be applied to the model. These verification and
validation techniques must also be thought out in advance. We have listed some general ratings
for the techniques used in this paper in Table 5. Possible ratings are fair, good, very good, and
excellent. It is important to note that the ratings listed are specific to our case studies.

TABLE 5 General ratings for our case studies

Agent-based Equation-based

Face validation/verification Very good Very good
Turing test Very good Good
Internal validity Very good N/A
Tracing Fair Excellent
Black-box testing Good Good
Model-to-model comparison Very good Very good
Historical data verification Very good Very good
Sensitivity analysis Good Good
Prediction validation Good Fair

15

FUTURE WORK

In future studies, it is important that we use and develop more stringent and formalized
verification and validation testing methods. Doing this on top of a strong statistical foundation
would further increase confidence in the models. Gathering empirical data and generating
statistical data would also serve as a better point of comparison when judging our models against
real-world systems. In addition, performing some goodness-of-fit tests, such as the chi-square
test and the Kolmogorov-Smirnoff test, as well as performing the ANOVA test would help us
determine the validity of the models. “Invalidating” our models, meaning performing tests
specifically designed to invalidate them, also has the potential to eliminate some of our
“validation bias” (Macal and North 2005). Finally, improving the helper functions in the C++
version of the second case study would both speed up and strengthen the results for that model. It
would also allow us to do a more in-depth verification and validation study.

REFERENCES

AlphaStep; available at http://www.nd.edu/~nom/Software/software.html.

Axtell, R., R. Axelrod, J.M. Epstein, and M.D. Cohen, 1996, “Aligning Simulation Models: A

Case Study and Results,” Computational and Mathematical Organization Theory.

Balci, O., 1998, “Book Chapter: Verification, Validation, and Testing,” Handbook of Simulation:

Principles, Methodology, Advances, Applications, and Practice, John Wiley & Sons, New
York.

Banks, J., J.S. Carson III, B.L. Nelson, and D.M. Nicol, 2005, “Discrete-Event System

Simulation,” Prentice Hall International Series in Industrial and Systems Engineering,
Fourth Edition.

Cabaniss, S.E., G. Madey, L. Leff, P. Maurice, and R. Wetzel, 2005, “A Stochastic Model for the

Synthesis and Degradation of Natural Organic Matter. Part I. Data Structures and Reaction
Kinetics,” Biochemistry, Vol. 76, No. 2, pp. 319−347, Springer, Nov.

Cosimano, T.F., and M.T. Gapen, 2004, “Optimal Fiscal and Monetary Policy with Nominal and

Indexed Debt,” working paper; available at http://www.nd.edu/%7Etcosiman/
Optimapolicy.pdf.

Cosimano, T.F., and M.T. Gapen, 2005, “Solving Ramsey Problems with Nonlinear Projection

Methods,” Studies in Nonlinear Dynamics & Econometrics, Vol. 9, spring.

Grimm, V., 2002, “Visual Debugging: A Way of Analyzing, Understanding, and

Communicating Bottom-up Simulation Models in Ecology,” Natural Resource Modeling,
Vol. 15, No. 1, pp. 23–38, spring.

Huang, Y., X. Xiang, G. Madey, and S. Cabaniss, 2005, “Agent-based Scientific Simulation,”

IEEE Computing in Science & Engineering, Vol. 7, No. 1, pp. 22–29, Jan./Feb.

16

Macal, C.M., and M.J. North, 2005, “Validation of an Agent-based Model of Deregulated
Electric Power Markets,” in Proceedings of the North American Association for
Computational Social and Organizational Science (NAACSOS) Annual Conference, Notre
Dame, IN, June 26−28.

Matlab; available at http://www.mathworks.com/products/matlab/.

Repast; available at http://repast.sourceforge.net/.

Sargent, R.G., 1998, “Validation and Verification of Simulation Models,” in Proceedings of the

1998 Winter Simulation Conference, pp. 121–130.

Xiang, X., R. Kennedy, and G. Madey, 2005, “Verification and Validation of Agent-based

Scientific Simulation Models,” in Proceedings of Agent-directed Simulation Conference,
San Diego, CA, April.

	VERIFICATION AND VALIDATION OF SCIENTIFIC AND ECONOMIC MODELS
	ABSTRACT
	INTRODUCTION
	VERIFICATION AND VALIDATION PROCESS
	Subjective Methods
	Quantitative Methods

	CASE STUDY I: AN AGENT-BASED SCIENTIFIC MODEL
	Conceptual Model
	Implementations
	Validation
	Subjective Analysis
	Quantitative Analysis

	CASE STUDY II: AN EQUATION-BASED ECONOMIC MODEL
	Conceptual Model and Implementation Differences
	Performance
	Validation
	Quantitative Analysis

	CONCLUSION
	General Guidelines

	 FUTURE WORK
	REFERENCES

